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Non-linear dynamic responses are analyzed for a #exible spinning disc with
angular acceleration. Based on the Kirchho! plate theory and the von Karman
strain theory, non-linear equations of motion are derived, which are coupled
equations between the radial, tangential and transverse displacements. The
equations of motion are discretized by using the Galerkin method. From the
discretized equations, the dynamic responses are computed by the generalized-a
time integration method. The analysis results show the e!ects of angular
acceleration on the dynamic responses.
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1. INTRODUCTION

Flexible spinning discs have a wide variety of applications in engineering from
circular saws and computer hard discs to optical discs such as CD-ROM and
digital video discs. An optical disc is an aluminium annular disc with the pits that
have a constant size and contain information. When the pick-up of an optical disc
drive reads out information from the pits, the relative speed of the pick-up to the
disc should be constant. Therefore, the angular speed of the disc changes when the
pick-up moves from one track to another. For this reason, it is necessary to study
the dynamic behaviours of a #exible spinning disc with angular acceleration.

Lamb and Southwell [1] and many other authors [2}4] presented studies on the
free vibration of #exible spinning discs. Much research was carried out on the
vibration and stability of spinning discs subjected to stationary transverse loads
[5}8]. On the other hand, the vibrations of spinning discs have been studied when
the discs are subjected to in-plane edge loads [9}11].

In this paper, the non-linear vibration of a #exible spinning disc with angular
acceleration is analyzed. Considering the angular acceleration of the disc and the
geometric non-linearity of the displacements, the equations of motion are derived,
0022-460X/00/120375#17 $35.00/0 ( 2000 Academic Press
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based upon the Kirchho! plate theory and the von Karman strain theory. The
derived equations are discretized by using the Galerkin approximation method,
and then the non-linear dynamic responses are computed by using the
generalized-a time integration method [12] and the Newton}Raphson method.
From the responses, the e!ects of angular acceleration on the dynamic responses
are investigated.

2. EQUATIONS OF MOTION

Consider a #exible spinning disc with angular speed X and angular acceleration
XQ . The spinning disc is clamped at the inner radius r"a by a rigid clamp, and is
free at the outer radius r"b, as shown in Figure 1 where the unit vectors e

r
and

eh are "xed in the space. Hence, the co-ordinate h is measured in the x}y co-ordinate
system which is a space-"xed co-ordinate system. It is assumed that the applied
transverse load p is axisymmetric, i.e., p"p (r, t). From the Kirchho! plate theory,
the displacements can be written as

u
r
"u!z

Lw
Lr

, uh"v!z
Lw
rLh

, u
z
"w, (1)

where u
r
, uh and u

z
are the displacements of a point in the disc in r, h and

z-directions respectively, while u, v and w are the radial, tangential and transverse
displacements of a point on the middle surface of the disc respectively. Since the
disc and the applied force are axisymmetric, the radial and tangential displacements
u and v are independent of h. Therefore, u and v are functions of the co-ordinate
r and time t, i.e., u"u(r, t) and v"v(r, t) while w is a function of r, h and t, i.e.,
w"w(r, h, t).

The strain energy of the disc is obtained with strains and stresses for the disc. To
consider the e!ects of the membrane stresses on the transverse displacement, the
Figure 1. Flexible spinning disc with angular acceleration.
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non-linear displacement}strain relations are used. The radial and tangential
normal strains, e

r
and eh , and the shear strain e

rh are given by
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(2)

It is assumed that the material of the disc is homogeneous, isotropic, elastic and
Hookean. Young's modulus and the Poisson ratio of the disc are given by E and
l respectively. Since the thickness h of the disc is very small compared to other
dimensions, the stress state of the disc is regarded as the plane-stress condition. In
this case, the strain energy of the disc may be expressed as

;"
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2 P

A
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r
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rhe0rh#m
r
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#mhih#2m

rhirh) dA, (3)

where A is the area of the disc, e0
r
, e0h and e0

rh are the strains at a point on the middle
surface:
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i
r
, ih and i

rh are the curvature changes of the de#ected middle surface:
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#
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rLrB , i

rh"!A
L2w
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q
r
, qh and q

rh are the linearized internal forces per unit length of the middle surface:
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and m
r
, mh and m

rh are the internal moments per unit length of the middle surface:

m
r
"D(i

r
#lih), mh"D (ih#li

r
), m

rh"(1!l)Di
rh (7)

in which D0 and D are the extensible rigidity and #exural rigidity of the disc
respectively:

D0"
Eh

1!l2
, D"Eh3/12 (1!l2). (8)
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To obtain the kinetic energy of the spinning disc, consider the velocity of a point
in the disc. The velocity can be determined by the material derivative of the
displacement vector

r"(r#u
r
)e

r
#uheh#u

z
e
z

(9)

with respect to time. Then the velocity can be expressed as

v"v0!zw, (10)

where
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Neglecting the rotatory inertia e!ect, the kinetic energy is approximated to

¹"

1
2

oh P
A

v0 ) v0dA, (12)

where o is the mass density of the disc.
The equations of motion and the boundary conditions for a #exible spinning disc

with angular acceleration are derived from Hamilton's principle. The equations for
the radial and tangential displacements are given by
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and the equation for the transverse motion is given by

ohA
L2w
Lt2

#2X
L2w
LtLh

#X2
L2w
Lh2

#X0
Lw
LhB#D+4w!

L
rLr CrAqr

Lw
Lr

#q
rh

Lw
rLhBD

!

L
rLhAqh

Lw
rLh

#q
rh

Lw
LrB"p, (15)



SPINNING DISC WITH ANGULAR ACCELERATION 379
where

+ 2"
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L
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r2Lh2
. (16)

On the other hand, the boundary conditions are

u"v"w"
Lw
Lr

"0 at r"a, q
r
"q

rh"m
r
"!D

L+ 2w
Lr

#

Lm
rh

rLh
"0 at r"b.

(17)

3. DISCRETIZATION OF THE EQUATIONS OF MOTION

The Galerkin method is used to discretize the equations of motion. Approximate
solutions for the discretized equations are obtained in a "nite-dimensional function
space. The radial, tangential and transverse displacements may be approximated by
the trial functions that are expressed as a series of basis functions:
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and the weighting functions corresponding to the trial functions are given by
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where I is the total number of the basis functions for u and v; N and M are the total
numbers of the basis functions for w ; ¹u

i
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in which au
i
, bu
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are constants. Substituting equations (20)

into equations (17), the boundary conditions may be rewritten as
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Note that au
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are determined from the boundary

conditions given by equations (21) and the normalizing conditions given by
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Discretized equations of motion are determined by the Galerkin method.
Consider an equation obtained by substituting u, v and w of equations (18) into
equations (13)}(15), multiplying these equations by uN , vN and wN of equations (19)
respectively, summing all the equations, and then integrating them over the area A.
If this equation is collected with respect to ¹M u

i
, ¹M v

i
, CM

mn
and SM
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, their coe$cients

yield the discretized equations since ¹M u
i
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i
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and S1
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are arbitrary. The

discretized equations for the radial and tangential displacements may be expressed
as

I
+
j/0

[mu
ij
¹G u

j
!2Xmuv

ij
¹Q v

j
#(ku

ij
!X2mu

ij
)¹u

j
!X0 muv

ij
¹v
j
]"X 2cu

i
, i"0, 1,2, I, (24)

I
+
j/0

[mv
ij
¹G v

j
#2Xmuv

ji
¹Q u
j
#(kv

ij
!X2mv

ij
)¹v

j
#X0 muv

ji
¹u
j
]"!X0 cv

i
, i"0, 1,2, I, (25)

where
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and the discretized equations for the transverse motion may be written as
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Equations (24), (25) and (27)}(29) can be rewritten in matrix form

MTG (t)#2XM
c
T0 (t)#(K

0
!X2M

k
#X0 M

c
)T(t)#N (T(t))"F(t). (31)

where N(T(t)) is a non-linear internal force vector, F(t) is an external force vector,
and

T"M(T
u
)T, (T

v
)T, CT,STNT (32)
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4. VERIFICATION OF THE DISCRETIZED EQUATIONS

The discretized equations of motion are veri"ed by computing natural
frequencies of discs. First, the natural frequencies of a stationary disc are computed
with the material properties given by o"1200 kg/m3, E"65)5]106 N/m2,
l"0)3, b"65 mm, h"1)2 mm and a/b"0)5. The natural frequencies for the
radial and tangential motion can be computed with equations (24) and (25) when
X"X0 "0. Table 1 shows that the natural frequencies are converged with the
number of the basis functions, I, for the radial and tangential motion and it
indicates that the radial and tangential motion has very high natural frequencies.
On the other hand, by increasing the total numbers of the basis functions for the
transverse motion, N and M, the natural frequencies for the transverse motion are
computed with equation (31) when N(T(t)) and F(t) are neglected, X and X0 are equal
to zero, and I is equal to 7. The convergence characteristics of the natural
frequencies are presented in Table 2, where mode (m, n) means that this mode has
m nodal circles and n nodal diameters. As shown in Table 2, the natural frequencies
are converged to those computed by Mote [13] when M increases. It is interesting
that N is not related to the convergence but with the number of computed modes.

Next, the discretized equations are veri"ed by computing the natural frequencies
when a disc rotates with a constant spinning speed, i.e., X0 "0. Denoting the
equilibrium position of equation (31) by T*, the equilibrium position may be
obtained from

(K
0
!X2M

k
)T*#N(T* )"F(t), (34)
TABLE 1

Convergence characteristics of the natural frequencies (rad/s) for the radial and
tangential motion when X"X0 "0 and a/b"0)5

I 1st 2nd 3rd 4th

1 4398)2859 11994)3259 20740)7987 36100)3432
2 4398)0613 11994)0893 20537)9454 35813)0706
3 4398)0353 11994)0555 20457)9712 35302)5168
4 4398)0296 11994)0459 20456)9807 34715)2994
5 4398)0185 11994)0256 20456)6950 34697)7373
6 4397)9644 11993)9245 20456)5889 34689)4296



TABLE 2

Convergence characteristics of the natural frequencies (rad/s) for the transverse
motion when X"X0 "0 and a/b"0)5

N

Mode M 1 2 3 4 5

1 261)6237 261)6237 261)6237 261)6237 261)6237
2 261)6101 261)6101 261)6101 261)6101 261)6101
3 261)6102 261)6102 261)6102 261)6102 261)6102

(0, 0) 4 261)6081 261)6081 261)6081 261)6081 261)6081
5 261)6003 261)6003 261)6003 261)6003 261)6003
6 261)5862 261)5862 261)5862 261)5862 261)5862
7 261)5756 261)5756 261)5756 261)5756 261)5756
Mote [13] 261)5329

1 267)1187 267)1187 267)1187 267)1187 267)1187
2 267)0943 267)0943 267)0943 267)0943 267)0943
3 267)0935 267)0935 267)0935 267)0935 267)0935

(0, 1) 4 267)0759 267)0759 267)0759 267)0759 267)0759
5 267)0348 267)0348 267)0348 267)0348 267)0348
6 266)9964 266)9964 266)9964 266)9964 266)9964
7 266)9832 266)9832 266)9832 266)9832 266)9832
Mote [13] 266)8646

1 N/A 296)0716 296)0716 296)0716 296)0716
2 N/A 296)0072 296)0072 296)0072 296)0072
3 N/A 295)9863 295)9863 295)9863 295)9863

(0, 2) 4 N/A 295)8556 295)8556 295)8556 295)8556
5 N/A 295)6855 295)6855 295)6855 295)6855
6 N/A 295)6029 295)6029 295)6029 295)6029
7 N/A 295)5900 295)5900 295)5900 295)5900
Mote [13] 295)2590

1 N/A N/A 374)4781 374)4781 374)4781
2 N/A N/A 374)3481 374)3481 374)3481
3 N/A N/A 374)2345 374)2345 374)2345

(0, 3) 4 N/A N/A 373)8237 373)8237 374)8237
5 N/A N/A 373)4617 373)4617 373)4617
6 N/A N/A 373)3222 373)3222 373)3222
7 N/A N/A 373)3053 373)3053 373)3053
Mote [13] 372)7320
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and the linearized equation of equation (31) in the neighbourhood of T* can be
expressed as

MTG#2XM
c
T0 #(K

0
!X2M

k
#K

T
)T"0, (35)

where K
T

is the tangent matrix of N(T) at T"T*. The computed natural
frequencies of a spinning disc with a/b"0)268 are plotted in Figure 2, which are
nearly the same as those computed by Hutton et al. [7].



Figure 2. Variation of the natural frequencies for the spinning speed when X0 "0 and a/b"0)268.
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5. NON-LINEAR DYNAMIC RESPONSES

The non-linear dynamic responses of a spinning disc with angular acceleration
are obtained by using the generalized-a time integration method [12]. Since the
generalized-a method is an unconditionally stable and implicit time integration
method, the method is superior in stability to the conditionally stable, explicit
Runge}Kutta method. For simplicity of discussion, equation (31) can be written as

MTG#CT0 #KT#N(T)"F, (36)

where
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c
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The generalized-a method for equation (36) may be expressed as
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and

d
n`1~af"(1!a

f
)d

n`1
#a

f
d
n
, v

n`1~af"(1!a
f
)v

n`1
#a

f
v
n
,

a
n`1~am"(1!a

m
)a

n`1
#a

m
a
n
, F

n`1~af"F((1!a
f
) t

n`1
#a

f
t
n
), (41)

in which F
n
is equal to F(t

n
), and d

n
, v

n
and a

n
are approximations to T (t

n
), T0 (t

n
) and

TG (t
n
) respectively; Dt"t

n`1
!t

n
is the time step; a

f
, a

m
, b and c are the algorithmic

parameters of the generalized-a method. When the parameter for the numerical
dissipation o

=
is speci"ed, the above algorithmic parameters are determined. See

reference [12] for the details of the generalized-a method. The initial conditions for
the time integration are given by
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Since equation (38) is a non-linear vector equation, the Newton}Raphson
method should be applied for each time step to compute d
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and a
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and a
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. To update the displacement and velocity in equations (39),
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needs to be computed from equations (38) and (39). Substituting equations (39)
into equation (38), the resultant equation becomes a non-linear algebraic vector
equation for a
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the iteration procedure to compute a
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may be expressed as
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where k represents the iteration number for each time step and J(k) is the Jacobian
matrix which is given by

J(k)"(1!a
m
)M#(1!a

f
)cDtC#(1!a

f
)bDt2[K#K

t
(d(k)

n`1~af)], (45)

in which K
t
(d(k)

n`1~af ) is the tangent matrix of N (d
n`1~af ) at d

n`1~af"d(k)
n`1~af .

In order to analyze the e!ects of angular acceleration on the dynamic responses
of a spinning disc with o"1200 kg/m3, E"65)5]106 N/m2, l"0)3, b"65 mm,
h"1)2 mm and a/b"0)268, the radial, tangential and transverse displacements
are computed at r"b when the time history of the spinning speed is given by
Figure 3(a). The spinning speed X increases with X0 "3000 rad/s2, maintains
constant speed X"300 rad/s, and then decreases with X0 "!3000 rad/s2. The
initial conditions of the disc are given by

u(0)"v(0)"w(0)"0, uR (0)"vR (0)"wR (0)"0, (46)

or

T(0)"0, T0 (0)"0 (47)



Figure 3. Time histories of the displacements for the disc with a/b"0)268 when the unit transverse
impulsive pressure is applied over the disc: (a) the spinning speed; (b) the transverse displacement; and
(c) the radial and tangential displacements.
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and the applied transverse load over the disc is

p(r, t)"d(t), (48)

where d(t) is the unit impulse function. For numerical computation, the numbers of
the basis functions, the time step size, and the algorithmic parameter are chosen as
I"M"N"5, Dt"10~4 s, and o

=
"1 respectively. The stop criterion of

iteration in a time step is given by

EDa(k)
n`1

E
2
(10~7, (49)

where EfE
2

is the l
2
-norm.

First, consider the e!ects of angular acceleration on the transverse displacement
of the spinning disc. As shown in Figure 3(b), the positive angular acceleration
decreases the amplitude and period of the transverse vibration while the negative
acceleration increases them. However, when no angular acceleration exists, the
amplitude and the period neither increase nor decrease. The results coincide with
the well-known fact that the e!ect of disc rotation is to sti!en the disc and increase
its e!ective natural frequencies.

Next, the radial vibration is analyzed for the disc with angular acceleration.
When the angular speed of the disc is given by Figure 3(a), the radial displacement
u is computed and presented in Figure 3(c). If the angular acceleration is positive,
namely, the angular speed increases with time, the radial displacement u increases
in the form of a parabola with a relatively high-frequency component. In the region
of the constant angular speed (X"300 rad/s), the radial displacement oscillates
about a constant values (u"0)06583 mm) with small amplitude and a relatively
high frequency. Assuming that the spinning disc is in a steady state, the exact value
of u is given by Timoshenko and Goodier [14]. When X"300 rad/s, the exact
solution is 0)06573 mm, which has only 0)15% di!erence from the numerical
solution. On the other hand it is reasonable that the radial displacement decreases
in the region of the negative angular acceleration.

It is interesting to investigate the tangential displacement. As shown in Figure
3(c), the tangential displacement v oscillates about some constant values when the
angular acceleration maintains a constant value. The frequencies of the tangential
displacement v are higher than those of the transverse displacement w. In addition,
it is noted that the displacement v oscillates about v"!0)05965, 0, and
0)05984 mm when X0 "3000, 0, and !3000 rad/s2 respectively. The di!erence in
the absolute values of v"!0)05965 mm and v"0)05984 seems to come from
numerical errors during the time integration. The inertia e!ect of the #exible
spinning disc can explain the reason why v oscillates about the negative, zero and
positive values X0 '0, X0 "0 and X0 (0 respectively. However, it is still a question
why the amplitude of the oscillation of v when X0 '0 is larger than the amplitude
when X0 (0.

Finally, Figures 4 and 5 illustrate the e!ects of angular acceleration on the
distributions of the displacements and the membrane stresses over the disc. The
distributions along the radial direction are obtained for the above example when



Figure 4. Displacement distributions of the disc with a/b"0)268 when t"0)05 s, i.e., when
X"150 rad/s and X0 "3000 rad/s2: (a) the radial displacement u; (b) the tangential displacement
v and (c) the transverse displacement w: . . . . exact when X0 "0.
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t"0)05 s, i.e., when X"150 rad/s and X0 "3000 rad/s2. The dotted lines in Figures
4 and 5 indicate the exact solutions for the disc without the transverse load [14],
when the disc is in the steady state, namely, when it has no angular acceleration. As



Figure 5. Membrane stress distributions of the disc with a/b"0)268 when t"0)05 s, i.e., when
X"150 rad/s and X0 "3000 rad/s2: (a) the radial stress p

r
; (b) the tangential stress ph ; and (c) the shear

stress p
rh: . . . . exact when X0 "0.
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shown in Figures 4 and 5, the distributions of the radial displacement u, the radial
stress p

r
and the tangential stress ph have no signi"cant di!erences from the steady

state exact solutions, while the tangential displacement v and the shear stress
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p
rh show entirely di!erent patterns of distribution, compared to the steady state

solutions. In the steady state, the disc has neither the tangential displacement nor
the shear stress. However, if the disc is subjected to angular acceleration, it has both
the tangential displacement and the shear stress. When r/b increases, the magnitude
of the tangential displacement v increases while that of the shear stress p

rh decreases.

6. CONCLUSIONS

Theoretical formulation and a numerical analysis of the non-linear vibration of
a #exible spinning disc with angular acceleration are presented. The equations of
motion for the radial, tangential and transverse displacements are derived,
considering the e!ect of angular acceleration as well as the non-linear coupling
e!ect between the radial, tangential and transverse displacements. In order to
obtain the non-linear dynamic responses, the equations of motion are discretized
by the Galerkin method and the discretized equations are solved by the
generalized-a time integration method.

The results of the present analysis may be summarized as follows.

(1) The positive angular acceleration decreases the amplitude and the period of
the transverse vibration while the negative acceleration increases them.

(2) The equilibrium position for the radial displacement is determined by the
centrifugal force that is proportional to the square of the angular speed.

(3) The equilibrium position of the tangential displacement is zero when the
angular speed is constant, i.e., when there is no angular acceleration.
However, if the disc has angular acceleration, the equilibrium position is
determined by the angular acceleration and the mass moment of inertia.

(4) Since the natural frequencies for the radial and tangential motion are higher
than those of the transverse motion, the radial and tangential displacements
have relatively higher frequency components compared to the transverse
displacement.

(5) The existence of angular acceleration has little in#uence on the distributions
of the radial displacement and the radial/tangential stress, while it has
a signi"cant in#uence on the distributions of the tangential displacement and
the shear stress.
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